XX. EUROPEAN TRANSPORT CONGRESS - GYŐR

Introducing artificial intelligence in air traffic control

ROLAND GURÁLY

SLOT CONSULTING/CORVINUS UNIVERSITY OF BUDAPEST (PHD STUDENT)

9 JUNE 2022

Content

Al in general Air Traffic Control AlSA project

Lessons learnt

Introduction – Al in general

Acceleration of technological development

Automation is everywhere

Emergence of artificial intelligence

Al vs traditional automation

	Uncertainty	Creativity			
Traditional automation	NO	NO			
Human being	YES	YES			
Artificial intelligence	YES, but decreasing	YES, and increasing			

Core AI domains

Reasoning	data transformation into knowledge
Planning	designing organised set of actions
Learning	Machine learning (ML): capability of the systems to automatically learn
Communication	Natural Language Processing: to identify, process, understand and/or generate information
Perception	computer vision and audio processing: ability of the system to become aware of their environment through the senses

Transversal AI domains

Integration and Interaction	combining the core domains with different characteristics (autonomy, cooperation, integration, etc.)				
Services	usually cloud platforms - off the shelf products				
Ethics and Philosophy	significant impact on human and society: solutions should be compliant with ethical principles and applicable regulations				

Source: own creation on the basis of AI watch

Guidelines for trustworthy Al

human a and ove	agency rsight	teck robu and	technical robustness and safety			privacy and data governance			transparency, diversity		
	nc discrim and fa	on- nination airness		societ environ wellt	a nr	l and nental eing		accour	٦t	ability	

Source: HIGH-LEVEL EXPERT GROUP ON ARTIFICIAL INTELLIGENCE

Issues with AI

new technology

boundaries are unknown (yet)

ethical concerns

regulations are in progress

standardization is lagging behind

Questions on progress with Al

Will artificial intelligence be used in primary systems in safety critical industries?

If yes, what are the main steps to be taken?

Air traffic control – capacity problems

Share of en-route ATFM delayed flights (%)

9.6% 3.2% 3.9% 4.8% 5.3% 2014 2015 2016 2017 2018

Source: EUROCONTROL

Automation is needed

SESAR: new solutions should provide substantial and verifiable performance benefits but maintain the safety level

Al is already in used in ATC, BUT: not in primary activities

Challenge: how to make human and machine cooperate efficiently?

The objectives of the AISA project

Exploration of the effects of human-machine distributed situational awareness

Search for opportunities for automation of monitoring tasks in en-route operations

Identifying the data needed by air traffic controller

Finding methods for adaptation to changes of the environment

AISA: AI Situational Awareness Foundation for Advancing Automation is a SESAR ER project, 892618

Aim: Team Situational Awareness

own drawing on the basis of the AISA concept

The main conceptual elements

own drawing on the basis of the AISA concept

Gradual implementation approach

AI	ATCO	PROBABILITY
Support	Apply	High
Propose	Approve	Low
Apply	Monitor	Unlikely

The forecasted roles of human and AI at particular tasks by 2035

Source: own work in AISA D2.2

AI	ATCO	PROBABILITY
Support	Apply	High
Propose	Approve	Medium
Apply	Monitor	Low

The forecasted roles of human and AI at particular tasks by 2050

Source: own work in AISA D2.2

First Tasks of AI in ATC systems

A, Relatively simple monitoring activities

B, Already automated

Examples

detection of incoming traffic

monitoring conformance of aircraft to the planned trajectory

identifying conflicts

monitoring adverse weather areas and restricted airspace monitoring of the status and performance of ATC sub-systems

Examples of results - ML

Source: own drawing on the basis of Perez-Castan, A. et al, 2022

Focus: Situation of Interest (SI) prediction

Using classification, regression techniques

- updates the prediction in a certain period of time
- realises both the aircraft currently in the sector and the ones approaching it
- utilising historical 4DT (4D trajectory) data and the current ADS-B data (position, velocity, heading), makes prediction for each aircraft.
- supports the tactical ATCO in his/her airspace monitoring work

Promising results:

100% right: predicted minimal distance between pairs within 5 NM

97% right: predicted minimal distance between pairs 5 – 10 NM

Foreseen future benefits

own drawing on the basis of the AISA concept

Lessons learnt: Implementing Al in primary systems of safety critical industries

Promising opportunities

BUT:

Essential: Safety, security and transparency

Important: Establishment of shared situational awareness

Gradual approach is needed: starting with simple tasks